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Small Area Estimation

• Enables local geography / subgroup estimates

• Dominant method:
Multilevel Regression + Poststratification
(MRP)

But at what cost?

“I think MRP is good. I think it’s
overrated also ... [I understand MRP as
asking] what the polls would look like
in a particular state or district without
having any polls of that state or
district... it’s a good approximation, but
it loses a lot of local variation.”

Nate Silver (2018)
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What this paper does

1. Derive identification conditions for unbiasedness when
borrowing information across small areas

2. A weighting approach clarifies conditions
• compared to an outcome-based approach like MRP

3. We leverage existing data not used in MRP
• initial (non-small area) survey weights
• covariates only measured in the survey
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Our method in a nutshell: Estimating FL-27 (Miami)

• Index people by 𝑖, areas of by 𝑗
• Survey inclusion for person 𝑖: 𝑆𝑖 ∈ {0, 1}
• Person 𝑖 is in Area 𝑗: 𝐴𝑖𝑗 ∈ {0, 1}
• Estimand: 𝔼 [𝑌𝑖|𝐴𝑖𝑗 = 1]

Combine

1. Direct estimator
(Only use FL-27 respondents)

• Weight by inverse of Pr (𝑆𝑖 = 1 ∣ Covariates𝑖, 𝐴𝑖𝑗 = 1)

2. Indirect estimator
(Use non-FL-27 respondents, reweight to look like FL-27)

• Weight by Pr (𝐴𝑖𝑗 = 1 ∣ Covariates𝑖, 𝑆𝑖 = 1)
• Weight them again to look like population
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Partial pooling needs two identification conditions

Assumption 1 (Sampling Ignorability)

𝑌𝑖 ⟂⟂ 𝑆𝑖 ∣ X𝑃𝑖 , 𝐴𝑖𝑗 = 1
• 𝑋 𝑃𝑖 : Poststratification variables (with Population
target)

e.g. age, sex
• Required for almost any survey estimate

→ If satisfied, direct estimator using weights

1
Pr (𝑆𝑖 = 1|X𝑃𝑖 , 𝐴𝑖𝑗 = 1)

is unbiased.
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Partial pooling needs two identification conditions

Assumption 2 (Area Ignorability)

For each area of interest 𝑗,

𝑌𝑖 ⟂⟂ 𝐴𝑖𝑗 ∣ X𝑃𝑖 , X𝑆𝑖 , 𝑆𝑖 = 1
• 𝑋 𝑆𝑖 : Covariates only in the Survey Sample

e.g., party ID, news interest
• Unique to small area estimation

→ If satisfied, indirect estimator using weights

1
Pr (𝑆𝑖 = 1|X𝑃𝑖 , 𝐴𝑖𝑗 = 1)

⋅ Pr(𝐴𝑖𝑗 = 1|X𝑃𝑖 , X𝑆𝑖 , 𝑆𝑖 = 1)
1 − Pr(𝐴𝑖𝑗 = 1|X𝑃𝑖 , X𝑆𝑖 , 𝑆𝑖 = 1)

is unbiased.
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Our synthetic area estimator
Simplest case: if post-stratification covariates (𝑋 𝑃𝑖 ) were sufficient, then compute weights

𝑤SA𝑖𝑗 ∝ Pr(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Area adjustment

× 1
P̂r(𝑆𝑖 = 1 ∣ X𝑃𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Selection adjustment

and take the weighted average across all respondents.

Result: With Assumptions 1 and 2, ∑𝑛
𝑖=1 𝑤SA𝑖𝑗 𝑌𝑖 is unbiased for 𝔼 [𝑌𝑖|𝐴𝑖𝑗 = 1] .

More generally,

𝑤SA𝑖𝑗 ∝

Adjustment from new 𝑋 𝑆𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞P̂r(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 , X𝑆𝑖 , 𝑆𝑖 = 1)
P̂r(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 , 𝑆𝑖 = 1)

× Pr(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 ) × 1
P̂r(𝑆𝑖 = 1 ∣ X𝑃𝑖 )
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Difference of our approach vs. other methods

1. vs. Traditional MRP
⇝ Fay and Herriot (1979) style estimator partially pools by random

effects (global + local shrinkage estimator)

2. vs. Machine learning (MR)P
⇝ Ghitza and Gelman (2013); Bisbee (2019); Ornstein (2020); Goplerud (2020)

all extract deep interactions from 𝑋 𝑃𝑖 , less on partially pooling

3. vs. “Multilevel regression with synthetic poststratification”
⇝ Leemann and Wasserfallen (2017) expand 𝑋 𝑃𝑖 through missing data

estimation.
(We estimate the area, not population, synthetically)

4. vs. “Subgroup Balancing Propensity Score”
⇝ Ben-Michael, Feller, and Rothstein estimate the propensity score by

partial pooling, but not the outcome
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Combined estimator reduces variance and bias

• CCES 2018
• 63 Congressional Districts in Texas + Florida,
𝑛 ≈ 140 each

• MRP vs. Proposed estimator (synthArea)
• 𝑋 𝑃𝑖 : Age group + sex + education
• 𝑋 𝑆𝑖 : Race × Party ID × News interest

RMSE: 0.100
Mean Abs. Err: 0.092

Mean Err.0.092
Corr: 0.91

RMSE: 0.082
Mean Abs. Err: 0.072

Mean Err.0.070
Corr: 0.88
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Insight 1: The combined estimator is a rescaling of national weights

𝑤SA𝑖𝑗 ∝ P̂r(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 , X𝑆𝑖 , 𝑆𝑖 = 1)
P̂r(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 , 𝑆𝑖 = 1)

× Pr(𝐴𝑖𝑗 = 1 ∣ X𝑃𝑖 ) × 1
P̂r(𝑆𝑖 = 1 ∣ X𝑃𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Plug-in 𝑤national𝑖

The survey weights 𝑤national...
• are already given in the dataset
• adjust for covariates beyond researcher’s 𝑋 𝑃𝑖
• but not used in MRP
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Insight 2: Violations of area ignorability can be empirically tested

• For each area 𝑗, regress
𝑌𝑖 ~ 𝐴𝑖𝑗 + 𝑋 𝑃𝑖 + 𝑋 𝑆𝑖

• Area ignorability is valid for area
𝑗 when the coefficient on 𝐴𝑖𝑗 is 0.
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Insight 3: Lack of covariates can cause partial pooling to “oversmooth”
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Takeaways

1. Small Area Estimation is not assumption-free

2. “Area Ignorability” is key assumption in Small
Area Estimation

3. Synthetic weighting (R package synthArea) can
incorporate existing pollster’s survey weights
and survey-only variables
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